

Akustik in Großraumbüros: Die DIN EN ISO 3382-3 in der Praxis

Vanesa Cortés, M.Sc., Graner + Partner Ingenieure GmbH

Inhalt

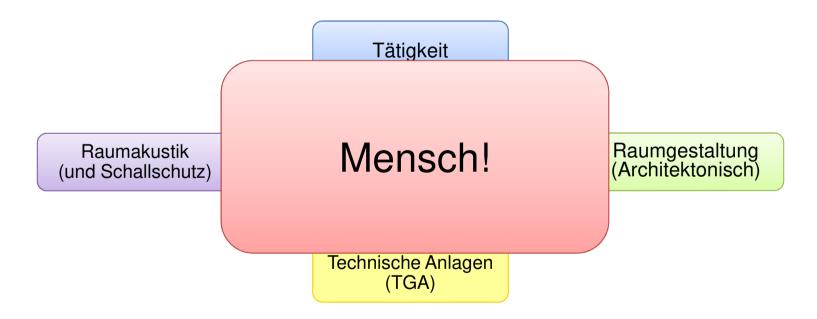
- Wie ist ein Großraumbüro zu planen, um adäquate akustische Bedingungen zu erreichen?
- Wie stellen wir sicher, dass Menschen gegen Lärm geschützt sind?
 Welches Ziel müssen wir erreichen?
- Was können wir in der Praxis realisieren?

Wie ist ein Großraumbüro zu planen, um adäquate akustische Bedingungen zu erreichen?

Das Großraumbüro als komplexes System

Tätigkeit

Raumakustik (und Schallschutz)


Großraumbüro

Raumgestaltung (Architektonisch)

Technische Anlagen (TGA)

Das Großraumbüro als komplexes System

Ganzheitliche / holistische Planung der Raumakustik

Ganzheitliche / holistische Planung der Raumakustik

- 1. Beschreibung der Tätigkeit
- 2. Planung der Raumgestaltung
- 3. Technische Anlagen als "Schallquellen"
- 4. Der Mensch als "Empfänger" und "Schallquelle"
- 5. Raumakustische Maßnahmen

Tätigkeit

Raumgestaltung

Technische Anlagen

Mensch

Raumakustik

1. Beschreibung der Tätigket

Tätigkeit

Einteilung der Tätigkeiten nach dem Maß der für die Erfüllung der Arbeitsaufgabe erforderlichen Konzentration oder Sprachverständlichkeit:

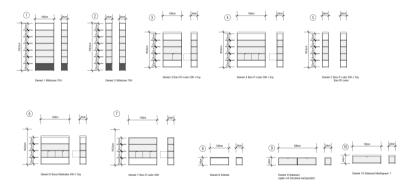
- Hohe (Tätigkeitskategorie I): z. B. schöpferisches Denken, exaktes sprachliches Formulieren, das Verstehen von komplexen Texten mit komplizierten Satzkonstruktionen, das Treffen von Entscheidungen mit großer Tragweite, etc.
- <u>Mittlere (Tätigkeitskategorie II)</u>: z. B. üblicherweise Routineanteile (wiederkehrende ähnliche und leicht zu bearbeitende Aufgaben), das Treffen von Entscheidungen geringerer Tragweite (in der Regel ohne Zeitdruck), etc.
- <u>Geringe (Tätigkeitskategorie III)</u>: überwiegend vorgegebener Arbeitsabläufe mit hohen Routineanteilen sowie geringere Anforderungen an die Sprachverständlichkeit

Quelle: ASR A3.7: Technische Regeln für Arbeitsstätten, Teil Lärm / Ausgabe: Mai 2018

2. Planung der Raumgestaltung

Raumgestaltung

Zonierung nach Tätigkeit und erzeugter Lärmemission, z. B.:


- Arbeitsplatz für konzentriertes Arbeiten: In dieser Zone wird überwiegend eine geistig intellektuelle Tätigkeit geleistet
- <u>Informelle Kommunikationszone</u>: Halbgeschirmte Zone, die der spontanen, unmittelbar teamorientierten Kommunikation dient
- <u>Rückzugsraum</u>: Geschirmte oder geschlossene Kabine für in der Regel zwei bis vier Personen für hochkonzentrierte und meist längere Arbeitsphasen
- <u>Formelle Kommunikationszone</u>: Diese Zone ist meist räumlich abgeschlossen und dient der längeren hochkonzentrierten, vertraulichen Kommunikation bei vereinbarten Besprechungen
- <u>Der "interkulturelle Marktplatz"</u>: Diese Zone dient der internen wie externen Interaktion und Entspannung (private oder kurze interdisziplinäre Gespräche oder Kundenempfang. Aufgrund des sehr hohen Kommunikationsaufkommens sollte diese Zone sehr gut geschirmt sein

2. Planung der Raumgestaltung

Meeting Commission Com

Raumgestaltung

3. Technische Anlagen als "Schallquellen"

Technische Anlagen

Kontrolle der Schallentstehung aufgrund technischer Anlagen, z. B.:

- Telefonklingeln
- Lüftergeräusche von PCs
- Server und sonstige Bürogeräte
- Vervielfältigungsgeräte (wie Drucker, Kopierer, etc.)
- Lüftungs-/Heizungsanlagen
- Aufzüge
- Türen

4. Der Mensch als "Empfänger"

Mensch "Empfänger"

Welche Belästigungen treten in Großraumbüros auf?

- <u>Beeinträchtigung der kognitiven Leistungen</u>: z. B. erhöhte Fehlerhäufigkeit, geringeres Arbeitsgedächtnis, veränderte Arbeitsabläufe / Unterbrechungen, mangelndes Textverständnis, geringere Problemlösefähigkeit und Kreativität
- <u>Belästigungsreaktionen</u>: z. B. Befindlichkeitsstörungen, Gereiztheit, Nervosität, Erschöpfung
- <u>Verändertes Kommunikationsverhalten</u>: z. B. Rückzug, weniger Interaktionen
- Gesundheit und Stresswirkungen: z. B. psycho-physiologische Aktivierungen
 (Hormonausschüttungen), körperliche Verspannungen, Erkrankungen des Herz-KreislaufSystems, nächtliche Schlafstörungen
- "Jede Jeck es anders!"

4. Der Mensch als "Schallquelle"

Mensch "Schallquelle"

Wie erzeugen Menschen Lärm?

- Stimmen bei Gesprächen zwischen Personen, bei Telefonaten oder bei Sprachsteuerung
- Erzeugte Arbeitsgeräusche
- Bewegung

Aber der wichtigste Faktor ist ein adäquates und respektvolles Verhalten!

Hierfür sind **Schulungen** sehr hilfreich.

5. Raumakustische Maßnahmen

Raumakustik

Welche Materialien stehen für die Verbesserung der Raumakustik zur Verfügung?

Wie stellen wir sicher, dass Menschen gegen Lärm geschützt sind? Welches Ziel müssen wir erreichen?

Normativer Rahmen

Arbeitsschutzgesetz (*ArbSchG*)

§ 4 Allgemeine Grundsätze

Der Arbeitgeber hat bei Maßnahmen des Arbeitsschutzes von folgenden allgemeinen Grundsätzen auszugehen:

- Die Arbeit ist so zu gestalten, daß eine Gefährdung für das Leben sowie die physische und die psychische Gesundheit möglichst vermieden und die verbleibende Gefährdung möglichst gering gehalten wird;
- Gefahren sind an ihrer Quelle zu bekämpfen;
- 3. bei den Maßnahmen sind der Stand von Technik, Arbeitsmedizin und Hygiene sowie sonstige gesicherte arbeitswissenschaftliche Erkenntnisse zu berücksichtigen;
- Maßnahmen sind mit dem Ziel zu planen, Technik, Arbeitsorganisation, sonstige Arbeitsbedingungen, soziale Beziehungen und Einfluß der Umwelt auf den Arbeitsplatz sachgerecht zu verknüpfen;

Normativer Rahmen

Arbeitsstättenverordnung (*ArbStättV*)

Technische Regel für Arbeitsstätten (*ASR*)
Für Lärm: ASR A3.7

Maximale zuläsige Beurteilungspegel und Nachhallzeiten

Annerkante Regel der Technik

DIN EN ISO 3382-3:2012-05

"Messung von Parametern der Raumakustik - Teil 3: Großraumbüros"

Die DIN EN ISO 3382-3: Warum ist ihre Anwendung sinnvoll?

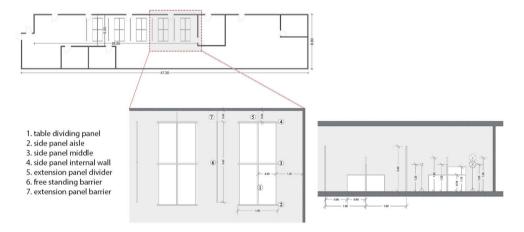
- In Großraumbüros ist eine alleinige Beurteilung der raumakustischen Bedingungen anhand der Raumbedämpfung (i.e. die Nachhallzeit) nicht sinnvoll
- Die Wirkung gezielt angeordneter Schallabsorptionsmaßnahmen oder die Minderung der Schallausbreitung sind Kenngrößen, die auch relevant für die Beurteilung der akustische Situation sind
- Diese Norm legt Verfahren zur Messung der raumakustischen Eigenschaften in möblierten Großraumbüros fest, die weitere wichtige Informationen über die Raumakustik geben

Die DIN EN ISO 3382-3: Welche Kenngrößen werden erfasst?

- Abschirmung von unmittelbar benachbarten Arbeitsplätzen (A-bewerteter SPL der Sprache in einem Abstand von 4 m, $L_{p,A,S,4 m}$)
- Behinderung der Schallausbreitung für die weiter entfernt liegenden Arbeitsplätze (räumliche Abklingrate des A-bewerteten SPL der Sprache, $D_{2,S}$)
- Einfluss der Verständlichkeit der Sprache auf die Leistungsfähigkeit sowie auf die Privatsphäre (Ablenkungsabstand, r_D und Vertraulichkeitsabstand, r_P)
- Hintergrundpegel (mittlerer A-bewerteter Fremdgeräuschpegel, $L_{p,A,B}$)

Die DIN EN ISO 3382-3: Kritik

- Nur grobe Beispiele für Zielwerte werden erwähnt:
 - "Schlechte" akustische Bedingungen $D_{2,S} < 5$ dB, $L_{p,A,S,4}$ m > 50 dB und $r_D > 10$ m
 - "Gute" akustische Bedingungen $D_{2,S} \ge 7$ dB, $L_{p,A,S,4} \le 48$ dB und $r_D \le 5$ m
- Die Zweckmäßigkeit und Gültigkeit der Kenngrößen wird in Frage gestellt
- Notwendigkeit weiterer Kenngrößen, die die Variabilität und Komplexität der Großraumbüros erfassen können (wie z. B. die "Liveliness")
- Aus diesen Gründen wird die Norm derzeit überarbeitet!



 Eine systematische Studie mit einer typischen Bürokonfiguration wurde 2019 durchgeführt (siehe Quelle)

Quelle: Wenmaekers and Van Hout - "How ISO 3382-3 acoustic parameter values are affected by furniture, barriers and sound absorption in a typical open plan office" / ICA 2019 Aachen

	D _{2,S}	L _{p,A,S,4 m}	r _D	r _p	T_{mid}	$L_{p,A,B}$
Absorptive Abhangdecke + Teppichboden	4,3 dB	54,1 dB	13 m	26,4 m	0,70 s	40 dBA
Absorptive Abhangdecke + Teppichboden + Stellwände oder Tischaufsatzwände ≥1,25 m ü. OKFF	4,9 dB	51 dB	9,1 m	21,4 m	0,54 s	40 dBA
Absorptive Abhangdecke + Teppichboden + Stellwände oder Tischaufsatzwände ≥1,50 m ü. OKFF	6,2 dB	48,3 dB	5,4 m	14,7 m	0,54 s	40 dBA
Absorptive Abhangdecke + Teppichboden + Stellwände oder Tischaufsatzwände ≥1,50 m ü. OKFF + 2 m Höhe Stellwände zwischen Arbeitsgruppe	6,8 dB	45,2 dB	2,1 m	10,9 m	0,53 s	40 dBA

"Schlechte" akustische Bedingungen $D_{2,S} < 5$ dB, $L_{p,A,S,4}$ m > 50 dB und $r_D > 10$ m

"Gute" akustische Bedingungen $D_{2,S} \ge 7$ dB, $L_{p,A,S,4} \, \mathrm{m} \le 48$ dB und $r_\mathrm{D} \le 5 \, \mathrm{m}$

Quelle: Wenmaekers and Van Hout - "How ISO 3382-3 acoustic parameter values are affected by furniture, barriers and sound absorption in a typical open plan office" / ICA 2019 Aachen

- "Gute" akustische Bedingungen erfordern eine Abtrennung der Arbeitsbereiche: Die Höhe und Menge dieser hängt von der Tätigkeit ab (je höher die erforderliche Konzentration, desto höher und umhüllender ist die Abtrennung zu planen!)
- "Gute" akustische Bedingungen resultieren nicht direkt in einer adäquaten Situation für die Menschen: Großraumbüros sind holistisch zu planen!
- Schwerpunkt: Der Faktor "Mensch"!
- Weitere Regelwerke, die detaillierten Vorgaben beschreiben, sind auch zu beachten: z. B. VDI 2569:2016-02 E: "Schallschutz und akustische Gestaltung im Büro"

Zusammenfassung

- Wie ist ein Großraumbüro zu planen, um adäquate akustische Bedingungen zu erreichen? Ganzheitliche / holistische Planung der Raumakustik
- Wie stellen wir sicher, dass Menschen gegen Lärm geschützt sind?
 Welches Ziel müssen wir erreichen? Normativer Rahmen und die DIN EN ISO 3382-3
- Was können wir in der Praxis realisieren?

Vielen Dank für Ihre Aufmerksamkeit!

Neue Bürofläche der Teekanne Düsseldorf Planung: bkp Architekten Düsseldorf Foto: Ralph Richter

Campus TENTE Wermelskirchen Planung: Großkemm+ Richard Architekten Solingen Foto: Sigurd Steinprinz